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THE SPHERICAL TWO-PiECE PROPERTY AND
TIGHT SURFACES IN SPHERES

THOMAS F. BANCHOFF

A set A in E? is said to have the spherical two-piece property (STPP) if no
plane or sphere in E*® separates A into more than two pieces. Examples of
such sets include a sphere, a plane, a circle, an annulus, and a torus of
revolution. In the first part of this paper we give a characterization of all
closed sets in the plane with the STPP.

A surface M? in E™ is said to be tight if no hyperplane separates M? into
more than two pieces. (This is equivalent to the hypothesis that M has minimal
total absolute curvature in the sense of Chern and Lashof.) We proceed to
identify all tight smooth surfaces which are subsets of spheres in E*. By a
result of Kuiper, the only tight surface in a sphere S*~* which is not contained
in a 3-sphere §* is a Veronese surface, which is an algebraic surface in S*. We
show as the main result of this paper that the only tight surfaces in $° other
than §° are the images under inverse stereographic projection of cyclides of
Dupin, a class of algebraic tori in E°.

Several of the results in the first part of this paper have been generalized by
S. Glass [8].

1. The circle-two-piece property

A set 4 in the plane E? has the circle-two-piece-property (CTPP) if every
circle or straight line S in E* separates 4 into at most two pieces. In an earlier
study [2] we examined objects with the ordinary two-piece property, i.e., those
which are separated into at most two pieces by every line in E?, and we related
this property to the study of total absolute curvature. The CTPP is also related
to total absolute curvature, but for objects in a sphere rather than in Euclidean
space, and we make this relationship more precise in the latter sections of this
paper. In this section however, we give a treatment which.is independent of
the total absolute curvature theory, and also independent of the ordinary TPP.

The whole space E? has the CTPP, since any circle or straight line S
determines precisely two open complementary components D; and D,, with
closures D, = D,US,i = 1,2. The empty set, a one-point set, and a set
consisting of just two points all have the CTPP trivially. The last-mentioned
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set is the only CTPP set which is not path-connected, where a set 4 is called
path-connected if for every two points p and g of A4, there is a path y, the
continuous image of a closed interval, from p to g in A. Using this notion, we
make the definition of the CTPP more precise:

Definition. A set A in E? has the CTPP if AN D, is path-connected, for
either complementary component D; of any circle or straight line S in E?.

Proposition 1.1. A circle A has the CTPP.

Proof. A circle A and a distinct circle or straight line S meet in at most
two points, so 4N D, must be either a closed circular arc, the whole circle A4,
or the empty set. In any case 4 N D, is path-connected so A has the CTPP.

Note that a straight line does not have the CTPP, and in fact the only non-
empty subsets of a straight line which can have the CTPP are the sets
consisting of one or two points.

Proposition 1.2. A closed disc A (i.e., a disc together with its circular
boundary 6A4) and a closed half-plane both have the CTPP.

Proof. 1f A is a closed disc, and p and g lie in 4 N D,, then the segment
pPg meets D, in an open subinterval (ab) with endpoints on S (which may be
empty, and which must be empty if S is a straight line). If § is a circle, then
one of the circular arcs, say a?), from a to b along S must lie in A4, since S has
the CTPP. Then we may connect p to ¢ by paUab Ubg. Similarly the closed
half-plane has the CTPP.

Other examples of CTPP objects are an annulus, a pair of internally tangent
circles together with the region between them, and generally, a closed disc
with a collection of open discs removed. The fact that these have the CTPP
follows from the following proposition.

Proposition 1.3. If A is a closed disc, a closed half-plane, or the whole
space, and if {B’} is a collection of disjoint open discs in A, then A — \J B?
has the CTPP.

Proof. If pand g lie in (4 — U B7) N D, then, as in Proposition 1.2,
there is a path y = p—aUa’Z\) U bq from p to q in A N D,. The path y meets the
disc B/ in at most two disjoint subpaths of 7. Let a; be the first point at which
y meets BY and b, the last. As in the previous proposition, we may find an arc

;JE- from a; to b; on B; and lying within D,, and we may form a new “path”
7" from p to g by replacing the subpath from a; to b; by the arc a/JFJ In the
case where the number of discs is finite, the set ¢’ is automatically a path, but
in the case of an infinite (necessarily countable) collection {B’} we must still
show that 7’ is the continuous image of a closed interval. (The analogous
theorem in the case of the ordinary two-piece property requires additional
hypotheses to insure the continuity, cf. [2].) Continuity follows however since
for any m, there are only finitely many disjoint discs of radius greater than
1/m which will meet y. Thus any sequence of points {p,} of y* which converge
to a point p’ of A either has all but a finite number of points in a finite number
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of arcs, in which case p’ is in 7/, or {p,} has points in a sequence of discs with
radii converging to zero, so again p lies in 7/, and in fact in y N 7".

An interesting use of a CTPP set obtained by removing an infinite number
of disjoint open discs from the disc so that no interior points remain is the so-
called “Swiss Cheese” used as a counterexample in the theory of function
algebras. In this context it is usually required that the sum of the radii of the
B, be finite to insure that 7 has finite length, but we do not require any finite
length condition for our paths; cf. [7].

Note that all the examples considered in Proposition 1.3 are closed sets.
Recall the following definitions: The frontier of 4 = 94 = {p in A such that
any disc about p in E* meets 4 and E> — A}. The closure of A is A = A U34,
and A is said to be closed if A = A. The interiorof A = A=A — AN A),
and A is open it A = A.

We shall prove as our main theorem in this section, a sort of converse of
Proposition 1.3:

Theorem 1.4, The only connected closed sets in E* with the CTPP are a
closed disc, a closed half-plane, or the whole plane, each with a collection of
disjoint open discs removed.

This class includes a single point, as a disc with zero radius, and the empty
set—a disc with negative radius. Also included is a circle, as a closed disc
with its interior (an open disc) removed.

The first step in the proof is to show that any simple closed curve with the
CTPP must be a circle. We recall some facts about simple closed curves from
the topology of plane sets. A simple closed curve A in E*is a 1—1 continuous
image of a circle. Each such curve determines precisely two complementary
domains, one bounded B, and the other unbounded B,. Four distinct points
a,b,c,d on A are said to be in cyclic order on A if b lies on one of the
subpaths of 4 from a to ¢ and d lies on the other. If a,b,c, and d are in
cyclic order on A, then any path from a to ¢ in B, meets any path from b to
din B, for i = 1,2. Also, if A is a simple infinite curve, then 4 separates
E? to two complementary components B, and B,, and four points a, b, ¢, d on
A are in order if any path in B, from a to ¢ meets any path in B, from b to d.

(Basic) Proposition 1.6. If A is a simple closed curve in E* with the CTPP,
then A is a circle.

Proof. 1If A is a simple closed curve which is not a circle, then we may
find four points @, b, ¢, d in cyclic order on A4 such that 4 lies in one of the
complementary components D, of the circle (or straight line) § determined by
a, b, and ¢. We may then find a circle §” through a and c sufficiently close to
S such that b and d both lie in D;. By changing the radius by a sufficiently
small amount, we obtain a circle §” with b and d in D} and a and ¢ in Dj.
Thus any path from a to ¢ on 4 meets D{’, so there is no path from a to ¢ in
A N DY, so A does not have the CTPP.
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Remark. The same reasoning shows that if 4 is a simple infinite curve
which is not a straight line, then it is possible to find a circle $ and four points
a, b, c, and d in order on A4 such that @ and c lie in D,, and b and d in D,.

Proposition 1.7. If A is a region bounded by a simple (closed or infinite)
curve 0A4, and has the CTPP, then 0A is a circle or a straight line.

Proof. 1If 3A4 is a simple closed curve which is not a circle, then as in
Proposition 1.6, we may find 4, b, ¢, d in (cyclic) order on 64, and a circle §
with a and ¢ in D, and b and d in D,. If there is no path from b to d in 4 N D,,
then 4 does not have the CTPP and we are done. If there is a path y from b
to d in 4 N D,, then we may find a circle S’ of slightly different radius so that
a and c lie in D} and y lies in D;. Then any path from a to ¢ in the region 4
meets 7, so there is no path from a to ¢ in AN D! and A does not have the
CTPP. For a simple infinite curve 34, the analogous reasoning shows that 64
must be a straight line if 4 has the CTPP. i

We now recall a proposition which properly belongs with the study of the
ordinary two-piece property (TPP), but which we prove here for completeness.
(A set 4 has the TPP if 4 N H, is connected for every half-space in E?.)

Lemma 1.8. If A is a set with the TPP with unbounded complementary
components {C’}, then E* — UC/ is convex.

Proof. First of all, E? — UC/ is contained in the convex hull H(A4) of 4
(= the intersection of all closed half-planes containing the bounded set A),
since a point in a bounded complementary component necessarily lies in an
interval with endpoints in 4. If E* — UC’ %= H(A), then there must be a
point p on 8H(A) which is in some C/. But any such point must lie on a
segment ab for a and b in A, where the line determined by a and b bounds a
half-plane H, which contains 4. But then 4 N H, is not connected, so 4 does
not have the TPP. Note that for an unbounded convex set H(4), we must have
8H(A) = 0, a pair of parallel straight lines, or a simple infinite curve.

Proposition 1.9.. If A is a bounded closed connected CTPP set with
unbounded complementary component C, then E* — C is a closed disc.

Proof. By the previous proposition, E* — C is convex. If E? — C is
contained in a line, then E* — C must be a bounded closed interval pg. If
p # g, then for the disc D, with diameter pg, we have 4 N D, = {p, g} and
A N D, is not connected. Thus either E* — C is a point (a disc with O radius),
or a convex set with interior, bounded by a simple closed curve, which must
be a circle, by the previous proposition.

To show that all bounded components must also have circles as boundaries,
we use a transformation which reduces the problem to.the previous case.

We recall the definition and properties of inversion with respect to a circle
with center x and radius p. The map I, ,: E* — {x} — E* — {x} sends p to a
point 1, ,(p) on the ray from x through p such that |[p — x|-|I, ,(p) — x| = p.
This map sends the set of circles not through x into itself, maps the set of



SPHERICAL TWO-PIECE PROPERTY 197

circles through x and the set of lines not through x into one another, and
preserves lines through x. It follows that if 4 is a CTPP set and x¢ 4, then
for any p, the set I, ,(A4) also has the CTPP.

We now proceed to the proof of the main theorem:

Proof of Theorem 1.4. 1f A is a bounded connected CTPP set, then by
Proposition 1.9, either 4 is a point or the boundary of the unbounded
complementary component is a circle. If x is a point in a bounded comple-
mentary component B of an arbitrary CTPP set 4, then I, (A) is a bounded
CTPP set which has I, (B) as its unbounded complementary component, so
I, ,(B), and B as well, will have circles as boundaries.

If 4 is unbounded, then 6H(A) is either empty, a pair of parallel straight
lines, or a simple infinite curve. If 3H(A) is empty, then 4 is E* — UB/. If
0H(A) is an infinite strip, then 4 does not have the CTPP. If gH(A) is a
simple infinite curve, then by Proposition 1.7, 34 must be a straight line and
A is a half-plane with a collection of disjoint open discs removed. If A4 is
bounded, then A is a closed disc with discs removed.

2. Additional results on the CTPP

In this section, we present a collection of results and techniques which will
be used in the latter section of the paper.

Definition. A connected set A on the sphere S? has the CTPP iff 4 N D,
is pathwise connected for any complementary component D, of a circles S on S?.

Proposition 2.1. A4 connected closed set A on S* has the CTPP if and only
if A is S* with a collection of disjoint open discs B7 removed, where each disc
B is the intersection of §* with an open half-space in E*.

Proof. We reduce this to a previous problem by using stereographic
projection x,: S* — {p} — E?, where E* is the plane through the origin
perpendicular to the vector to p, and z,(x) is the point in E* collinear with p
and x. This projection sends circles not through p to circles in E?, and circles
through p to straight lines in E?. Thus a closed set 4 in $* — {p} has the CTPP
if and only if z,(4) is a bounded CTPP set in E*.

Now if 4 is not §* itself, we may choose p in E* — 4 to get a bounded
connected closed set with the CTPP in E*. By Theorem 1.4, such a set is a
closed disc with a collection of open circular discs removed, and therefore 4
itself is either a point or the complement of a number of discs with circular
boundaries.

Using stereographic projection, we may present an additional proof of the
(Basic) Proposition 1.6, and tie the subject in with total absolute curvature.

The fundamental observation is that a set B on $* has the CTPP on $* if
and only if B has the TPP as a subset of E*, since a plane E* in E® separates
B into at most two pieces if and only if the circle E*($* separates B into at
most two pieces in S°. :
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Proof 2 of Proposition 1.6. If A is a simple closed curve in E* with the
CTPP, then z,%(A) is a simple closed curve with the CTPP in §* — {p}, and
therefore is a simple closed curve in E* with the TPP. But a simple closed
curve with the TPP has at most one local maximum for every linear (height)
function on E?°, and this, for smooth curves, is equivalent to the condition of

minimal total absolute curvature, i.e., flk(s)[ds = 2z. In [2] we showed
seC

that a TPP simple closed curve must lie in a plane and be convex, generalizing

the classical result of Fenchel [6] for twice-differentiable curves. Therefore

7,'(4), as a TPP curve, must lie in a plane as well as on the sphere, so z;%(4),

and A as well, must be circles.

Using the concept of inversion with respect to a circle we may prove some
propositions:

Proposition 2.2. If A is a simple closed curve in the plane such that
1.,.(A) is convex for any x not in A and any p, then A is a circle.

Proof. If A is not a circle, then we can find a circle S which separates 4
into more than two pieces. But then for a point x on § not in A4, the image of
S under [/, , is a straight line which separates I, ,(4) into more than two
pieces, so [, ,(A) is not convex.

Proposition 2.3. If A is a simple closed curve in the sphere S, which is
not a circle, then in each complementary component of A, there is a circle
which meets A in a non-connected set.

Proof. First we project 4 by stereographic projection =, from a point p
of S not on 4 to obtain a simple closed curve in the plane, which is not a
circle. It follows from the proof of Proposition 2.2 that in each complementary
component there is an x such that the image under [, , is non-convex. But for
any non-convex simple closed curve in the plane, there is a support line which
meets the curve in a non-connected set. In this way we obtain a pair of circles
(or line segments), one in each complementary component of z,(A4), each
meeting 7,(A4) is a non-connected set, and this gives a pair of circles on A4,
which bound discs containing 4 and meet 4 in non-connected sets.

Corollary 2.4. If A is a closed connected set on §* without the STPP, then
there is a circle C on S* which bounds a disc D containing A and such that
C N A is not connected.

Proof. Choose a complementary component B of A, which is bounded
by a simple closed curve which is not a circle. By the previous proposition, we
may find a circle C in B meeting 4 in a non-connected set, as required.

In [1] we examined the critical points of the angular coordinate function 6,
of a polar coordinate system centered at x, and showed that 4, has exactly
two critical points on a curve A for every point x not within 4 if and only if
A is convex. Here we may consider instead the radial coordinate function

0z E* — E?, 0.(p) =[x — p|.
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Proposition 2.3. If A is a simple closed curve and p, has at most two
critical points for almost every x not on A, then A is a circle.

Proof. 1If A is not a circle, we may find a circle S with center x which
separates A into at least four pieces, so p, must have an extremum on each
piece. This is also true for all circles sufficiently close to S, so for an open set
of x in £*, the function p, has more than two extrema on A.

We now consider a twice-differentiable curve A4 in E* with a well-defined
curvature k(p) at every point p of 4. At every point p, we have a well-defined
osculating circle @(p), tangent to 4 at p with radius (of curvature) r(p) =
1/k(p), which agrees with 4 up to the second order (i.e., the Taylor
expansions of 4 and @(p) about p have identical second order terms). It
follows that for any circles S different from @ ,(k) and tangent to A at p, there
is a neighborhood w of p on A4 such that w — {p} C D, for one of the comple-
mentary components of D; of S. We describe the circles tangent to A at the
vector P by choosing a unit normal #(p) to 4 at p, and letting S(p, k) be the
circle with center p + 7(p)/k and radius |1/k|. (Here k can be any real
number, so S(p, 0) denotes the tangent line of A at p, and S(p, k(p)) = O(p).)
Since the curvatures at the points of a closed curve are bounded, the circles
S(p, k) for | k| sufficiently large meet the curve 4 at just the one point p. Let
k(p) and k(p) be the two numbers such that S(p, k) N A + {p} if k(p) < Kk
< k(p) and S(p, k) N A = {p} if k < k(p) or k(p) < k. Thus A is contained
between the circles S(p, k(p)) and S(p, k(p)) tangent to A4 at p.

Proof of Proposition 1.6 for twice-differentiable curves. If A has the CTPP,
then k(p) = k(p). Otherwise D,(p, k(p)) N @ = {p} for some neighborhood w
of pon 4, and D,(p, k(p)) N (A — w) is non-empty or we could find a larger
value for k(p). Thus D,(p, k(p)) N A is not connected so A4 does not have the .
CTPP. Similarly k(p) = k(p), so A, which lies between S(p,k(p)) and
S(p, k(p)), must equal d(p).

Remark. The osculating circle @(p) has the property that it separates the
plane into two regions such that 7, ,(A4) is convex at I, ,(p) if x is in one
complementary component of @(p), and concave if x is in the other component
(where a closed curve C is said to be convex at a point p if there is a segment
through p not containing any points interior to C). This follows since the circle

o(p)
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through x tangent to 4 at p will support the image of A locally, and the
support segment will lie inside or outside the region bounded by 1,,, depending
on the position of x relative to @(p). It is only for points x on @(p) that the
image curve can have a tangent which has order of contact greater than two
at the image of p.

Remark. If we restrict consideration to closed bounded 2-manifolds-with-
boundary in E? or %, then we may express the main theorem of § 1 in a more
symmetrical form. A 2-manifold-with-boundary 4 in E? is a non-empty set
such that every point p of 64 has a neighborhood B in E* such that BN A4 is
in 1 — 1 continuous correspondence with the intersection of an open disc
about the origin with the closed upper half-plane. A bounded 2-manifold-with-
boundary A is characterized by the fact that 4 is closed, 4 has no components
which are simple closed curves, and every component of 64 is a simple closed
curve.

Theorem 1.4 for Manifolds-with-Boundary. A 2-manifold-with-boundary
A has the CTPP if and only if A is pathwise connected and every component
of 8A has the CTPP.

3. TPP surfaces in spheres and the STPP

Definition. A set 4 in E**!(or $**!) has the spherical-two-piece-property
(STPP) if A N D, is pathwise connected for any complementary component
D,(i = 1,2) of a hyperplane or hypersphere S in E**'(or $**1),

Proposition 3.1. An n-sphere S* in E™'' has the STPP if n > 0. A4
hyperplane H™ in E**! has the STPP if n > 1.

Proof. For any S, D; N S* is either S”, the empty set, a single point, or
an n-disc on S” bounded by an (n — 1)-sphere, and for n > 0, these sets are
all connected. Similarly, for any S = H*, S N H" is either the empty set, an
(n — 1)-sphere, or an (n — 1)-plane, and each of these will separate H" into
at most two pieces if n > 1.

We recall from [2] that a set A is said to have the two-piece-property (TPP)
it AN D, is pathwise connected for any complementary component D,(i = 1, 2)
of a hyperplane H" of E**!,

Proposition 3.2. A set A contained on an S* in E**' has the TPP as a
subset of E**! if and only if A has the STPP as a subset of S™.

Proof. This follows since each hyperplane H” in E*** meets S™ in a point,
the empty set, or an (n — 1)-sphere, and A N D, for a complementary
component D; of H* in E**! is identical with A N D, for a complementary
component D; = D; N §* of H* N S* in S”.

Theorem 3. If A is a smoothly embedded 2-sphere in E* which has the
STPP, then A must be (Euclidean) 2-sphere.

Proof. 1If A has the STPP in E*, then n;'(A4) is an STPP set in S* — {p}
in E**, so in particular, x,(4) is a smooth 2-sphere in E"*'. By a result of
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Chern and Lashof [4], the set #;’(4) must be the boundary of a convex set
in an £* in £**', But then #,(4) lies in E° 1 ($*** — {p}), so n,(4) is a
Euclidean 2-sphere and therefore so is 4.

Proposition 3. If A is a smooth 2-dimensional surface embedded in S™ with
the STPP, then either A = §*, A = the real projective plane embedded as a
Veronese surface in S*, or A is an orientable surface in $°.

Proof. This follows from a result of Kuiper—any TPP smooth surface
must be contained in an E*, and the only such surface not contained in an E*
is the Veronese surface [11]. If 4 is a smooth surface embedded in $°, then
for p ¢ A, the image 7,(A4) is a smooth STPP surface imbedded in E*, so z,(4)
and A will be orientable.

The problem of finding all TPP surfaces contained in spheres is thus reduced
to finding all orientable surfaces in E* with the STPP.

4. STPP surfaces embedded in E°

For smooth surfaces M? in E®, an alternative characterization of the TPP is
that every local support plane at a point p is a global support plane. (A plane
H through a point p is said to be a local support plane of M* at p if p has a
neighborhood U in M? which lies in a closed component, say D,, of H, and
H is a global support plane it H(\ M? = @ and M* C D). In the study of
smooth surface with the STPP, the corresponding concept is that of a support
sphere.

Definition. A sphere (or plane) S is said to be a local support sphere of
M?atpif peSN M?and U C D, for some neighborhood U of p in M2, If U
can be chosen so that § N U = {p}, then § is said to be a strict local support
sphere at p. A global support sphere S is one such that S N M? == § and
M: C D,

Proposition 4.1. A surface M* has the STPP if and only if every local
support sphere at a point p is a global support sphere.

Proof. 1f S is a local support sphere at p, which is not global, then there
is a point g of M? in D,. For a sphere S’ in D, tangent to S at p but with a
slightly different radius, we still have g in D;, but now §’ N U = {p}, and we
have no path from p to g in D,, so M? does not have the STPP. Conversely,
if M? does not have the STPP, then for some §, M? N D, is not connected so
we have at least two components C, and C,, both bounded since M* is a closed
surface. Change S radially into D, until the last sphere §’ which meets both
C, and C,. Then D] N M, is still disconnected, but §’ is a local support sphere
for a point p either on C, or C,.

As in the case of curves in the plane, we may introduce for each point p
the spheres S(p, k) tangent to M? at p, with center p + 7i(p)/k and radius.
|1/k|, where k¥ may be any real number, with S(p, 0) denoting the tangent
plane at p. (The unit normal vector 7(p) may be selected continuously over
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the entire embedded surface M?, but at this point we work only locally.)

Let k(p) and k(p) be the two numbers such that S(p, k) is a strict global
support plane for k < k(p) or k(p) < k, and such that for any k in the interval
(k(p), k(p)), S(p, k) N M* = {p}. Thus at each point p, the surface M? is
contained in the region between S(p, k(p)) and S(p, k(p)). Since we assume
that M? has continuously defined curvature, both k(p) and k(p) are finite.

Recall that for a smooth surface with continuous curvature, the normal
sections at p obtained by intersecting M? with a plane through #n(p) are plane
curves with well-defined curvatures, so each has an osculating circle. The
maximum and minimum values k,(p) and k,(p) of these curvatures are the
principal curvatures; and if they are distinct, then they correspond to the normal
sections from a pair of orthogonal planes. The osculating circle for the normal
section with radius k,(p) is the equator of the sphere S(p, k,(p)), and in fact all
of the osculating circles of the normal sections must lie in the closed region
between the spheres S(p, k,(p)) and S(p, k,(p)). From the basic property of
osculating circles, it follows that if k is not in [k,(p), k,(p)], then S(p, k) is a
local support sphere at p, since every normal section at p will contain an arc
about p which except for p, lies entirely in a complementary component D, of
S(p, k), and the union of these arcs will contain a disc neighborhood U of p
lying, except for p, in D,.

Proposition 4.2. If M? is a smooth surface in E* with the STPP, then at
every point, k(p) = k(p) and k(p) = k,(p).

Proof. Since every local support sphere must be global, it follows that
k(p) < k(p) < k(p) < k(p), and we need only show that for any k in
k,(p), k,(p)), we have M? (N S(p, k) =+ {p}. This follows since S(p, k) meets
the osculating circles with curvatures k,(p) and k,(p) just at p, so we have a
neighborhood w, of p in the first normal section such that w, — {p} "D, and
w, of p in the other normal section with w, — {p} € D,. Thus any embedded
disc neighborhood U of p in M?* must meet S(p, k) in points other than p, since
its boundary curve contains parts of both complementary components of
S(p, k).

Theorem 4.3. If M* is a smooth surface embedded in E* with the STPP,
then M:? is either a (Euclidean) 2-sphere or a smooth torus.

Proof. By Proposition 4.2, if M? has any umbilic p (where k,(p) = k.(p)),
then M? lies “between” the identical spheres S(p, k,(p)) and S(p, k,(p)), so M?
is a sphere. It follows that if M? is not the sphere, then M* has no umbilics,
so at every point p there is a larger principal curvature k,(p) determining a
certain principal direction in the tangent space of M* at p. Since we have no
umbilics, this yields a differentiable field of directions, without singularities,
on the orientable surface M?. But the only orientable surface admitting such a
field is a torus (the sum of the indices of singularities of any direction field is
the Euler-Poincaré characteristic, and since we have no singularities y(M?) = 0,
and M? is orientable so M? is a torus. For a clear development of this result
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compare H. Hopf [9]).

Remark. The support spheres S(p, k,(p)) = S, and S(p, k,(p)) = S, separate
E? into three regions, such that for any point x between S, and S,, the image
1, ,(M? has positive curvature at I, ,(p), while the curvature is negative for
any point x outside the closed region between S, and §,. This is independent
of the radius p, and it follows simply from the fact that the maximum and
minimum curvatures of the normal sections will be non-zero, and with different
signs if the point x lies between S, and §, and with the same signs if x lies in
one of the other open complementary components of S, U S,.

This demonstrates in particular that any sphere S between S,(p) and S,(p)
cuts a sufficiently small disc neighborhood U of p into exactly four parts, two
inside S and two outside and each curve in a principal direction contains points
in two of the components. In fact, if we invert with respect to a sphere
centered at a point x on .S and not on M?, then the image of S N U will be the
intersection of the tangent plane to I, ,(M?®) at I, (p), and at such a negatively
curved region, the intersection lines are tangent to the asymptotes of the Dupin
indicatrix.

5. Toriin E® with the STPP

We first show that there exist tori-in E* with the STPP.

Proposition 5.1. A rorus of revolution T*, formed by revolving a circle
around an axis which it does not meet, has the STPP.

Proof. Any point p of T* lies on a circle of latitude C,(p) and a circle of
longitude C,(p), and for any other point g, we obtain r = C,(p) N C,(g) and
s = C(p) N C(qg). The points p,r,q,s taken in order form an isosceles
trapezoid in E* (which may degenerate to a doubly covered segment), and this
can be inscribed in a circle C. If § is a sphere or plane in E?, and p and q lie
in T? N D,, then since C has the STPP, at least one of the points r or s, say
r, lies in D,. Since C,(p) has the STPP, there is at least one arc y, from p to
r on C,(p) in D, and similarly an arc y, from p to g in C,(g) in D,. Then the
path 7, U 7, connects p to g in D,, so T* N D, is pathwise connected.

Remark. An alternate proof of this proposition may be obtained by
expressing 7% as the image 7,(S'(r,) X $'(r,)) under stereographic projection
from a 3-sphere of a flat torus S'(r,)) x Sr,) C E* x E* = E*, where S'(r)
= {(x, ) e E*|x* + y* =i} 50 §'(r) X S'(rp) CTSWH + 1) = {(x, 5,2, w) | x*
+ ¥ + 22 4+ w = 1} + r2}. By aresult of Kuiper [10], such a flat torus has
the TPP in S*(v7?* + 2 so it must have the STPP, and then so does T°.
Conversely, since T? has the STPP by Proposition 5.1, any flat torus of the
form S*(r)) x S(r,) in a 3-sphere has the TPP.

We may obtain a further collection of examples by inversion. The image of
a torus of revolution 7% under an inversion I, ,: E* — {x} — E° — {x} in a
sphere of radius p and center x not on 7° must also have the STPP. Such
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surfaces are known as Cyclides of Dupin, and they are characterized by the
fact that all their lines of curvature in both systems are circles. (Cf. Eisenhart
[5, pp. 312-313].) We proceed to make use of this characterization to conclude
that the only STPP tori are Dupin cyclides.

We must first make a closer examination of the intersections of support
spheres with M=,

Proposition 5.2. For any support sphere S of an STPP surface M?, the
intersection S N M? has the CTPP on the sphere S.

Proof. If SN M? does not have the CTPP, then by the remark after
Proposition 2.2, we can find a circle C on S bounding a disc D, containing
S N M? and such that C N M? is not connected. Choose @ and ¢ on different
components of C N M? and points b and 4 in C — (C N M? such that a, b, c,
and d are in cyclic order on C. Let y be the geodesic arc from b to d in D,,
and let B be a neighborhood of y in E* not meeting M?. Then for a sphere
S’ sufficiently close to S meeting S in C, the points a and ¢ will be in different
components of D’ N M?*—there can be no path from atoc¢in M* N D’ N D by
the choice of C, and any path from a to ¢ in D’ — (D N D’) must pass
through B.

Proposition 5.3. If M* is a torus in E* with the STPP, then for any
support sphere S, S N M* is a point or a circle.

Proof. By the previous proposition, S N M? is a (connected) closed set with
the CTPP. But we know all the CTPP connected closed sets of a 2-sphere S
by Theorem 1.4—i.e., S, the empty set, a single point, or S with a union of
disjoint open circular discs removed. But S N M? == S since M* is a torus, and
SN M*+ @ since S is a support sphere. If M* N S contained any interior
points, then these would be interior points of a sphere S, so umbilics on M?
and then M* would be a sphere by Theorem 4.3, a contradiction. Thus M*N S
is either a point or a set without interior obtained by removing disjoint open
circular discs from S. One such set is a circle, but for any other such set we
must remove infinitely many open discs, as in the “Swiss cheese” example.
But then we may find at least three boundary circles of the removed discs
which do not intersect, and any three disjoint curves on a torus must
disconnect the torus into more than two pieces, so M N D, would be
disconnected and so would M N D; for a sphere S’ obtained by changing the
radius of S by a sufficiently small amount.

Proposition 5.4. If M? is a torus with the STPP in E?, then for every
support sphere S, S N M* is a circle. :

Proof. 1If S(p, k;(p)) N M? = {p}, then for any value of k in (k,(p), k,(p))
there is a neighborhood U of p such that S(p, k) N U consists of four paths
from p separating the pair of regions in D, N U (containing a deleted
neighborhood @, — {p} of the normal section with curvature k,(p)) from the
pair of regions D, N U. Since S(0, k,(p)) N M? = {p}, for &’ sufficiently close
to k,(p), the sets S(p, k) N M and D; N M? will lie in the neighborhood U of
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p, and we may find points r and s of (v, — {p}) N D] such that any path from
r to s in M? (N D] passes through p. For a sphere S with radius slightly
different from that of S(p, k'), the points r and s will still be in D}, but p will
be in D} ; so there is no path from r to s in D{ N M? and M? does not have
the STPP.

Theorem 5.5. If M* is a smooth torus in E* with the STPP, then M* is a
cyclide of Dupin.

Proof. By Proposition 5.4, the curve through p with principal curvature
k,(p) is a circle, and the same is true for the other direction of curvature.
Since this is true at all points of the surface, all the lines of curvature are
circles, and the theorem follows.

Remark. The family of cyclides obtained by stereographic projection of
the standard flat torus from various positions on S is the subject of a computer
graphics film, described in [3].
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